Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films

Identifieur interne : 005155 ( Main/Repository ); précédent : 005154; suivant : 005156

Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films

Auteurs : RBID : Pascal:09-0305275

Descripteurs français

English descriptors

Abstract

Electrodeposited CuInSe2 thin films are of potential importance, as light absorber material, in the next generation of photovoltaic cells as long as we can optimize their annealing process to obtain dense and highly crystalline films. The intent of this study was to gain a basic understanding of the key experimental parameters governing the structural-textural-composition evolution of thin films as function of the annealing temperature via X-ray diffraction, scanning/transmission electron microscopy and thermal analysis measurements. The crystallization of the electrodeposited CuInSe2 films, with the presence of Se and orthorhombic Cu2-xSe (0-Cu2-xSe) phases, occurs over two distinct temperature ranges, between 220 °C and 250 °C and beyond 520 °C. Such domains of temperature are consistent with the melting of elemental Se and the binary CuSe phase, respectively. The CuSe phase forming during annealing results from the reaction between the two secondary species O-Cu2-xSe and Se (o-Cu2-xSe+Se→2 CuSe) but can be decomposed into the cubic β-Cu2-xSe phase by slowing down the heating rate. Formation of liquid CuSe beyond 520°C seems to govern both the grain size of the films and the porosity of the substrate-CuInSe2 film interface. A simple model explaining the competitive interplay between the film crystallinity and the interface porosity is proposed, aiming at an improved protocol based on temperature range, which will enable to enhance the film crystalline nature while limiting the interface porosity.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0305275

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of secondary phases during annealing on re-crystallization of CuInSe
<sub>2</sub>
electrodeposited films</title>
<author>
<name sortKey="Gobeaut, A" uniqKey="Gobeaut A">A. Gobeaut</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Réactivité et Chimie des Solides, 33 rue St Leu</s1>
<s2>80039 Amiens</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Picardie</region>
<settlement type="city">Amiens</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laffont, L" uniqKey="Laffont L">L. Laffont</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Réactivité et Chimie des Solides, 33 rue St Leu</s1>
<s2>80039 Amiens</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Picardie</region>
<settlement type="city">Amiens</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tarascon, J M" uniqKey="Tarascon J">J.-M. Tarascon</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Réactivité et Chimie des Solides, 33 rue St Leu</s1>
<s2>80039 Amiens</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Picardie</region>
<settlement type="city">Amiens</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Parissi, L" uniqKey="Parissi L">L. Parissi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut de Recherche et de Développement de l'Energie Photovoltaïque, 6 quai Watier</s1>
<s2>78401 Chatou</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Chatou</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kerrec, O" uniqKey="Kerrec O">O. Kerrec</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut de Recherche et de Développement de l'Energie Photovoltaïque, 6 quai Watier</s1>
<s2>78401 Chatou</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Chatou</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0305275</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0305275 INIST</idno>
<idno type="RBID">Pascal:09-0305275</idno>
<idno type="wicri:Area/Main/Corpus">005471</idno>
<idno type="wicri:Area/Main/Repository">005155</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing temperature</term>
<term>Beta phase</term>
<term>Chalcopyrite</term>
<term>Copper selenides</term>
<term>Crystallinity</term>
<term>Crystallization</term>
<term>Cubic lattices</term>
<term>Electrodeposited coatings</term>
<term>Electrodeposition</term>
<term>Grain size</term>
<term>Heat treatments</term>
<term>Indium selenides</term>
<term>Interfaces</term>
<term>Orthorhombic lattices</term>
<term>Photovoltaic cell</term>
<term>Photovoltaic cells</term>
<term>Porosity</term>
<term>Scanning electron microscopy</term>
<term>Scanning transmission electron microscopy</term>
<term>Solar cells</term>
<term>Temperature dependence</term>
<term>Thermal analysis</term>
<term>Thermal annealing</term>
<term>Thin films</term>
<term>Transmission electron microscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recuit thermique</term>
<term>Cristallisation</term>
<term>Revêtement électrodéposé</term>
<term>Dépôt électrolytique</term>
<term>Couche mince</term>
<term>Dispositif photovoltaïque</term>
<term>Cellule photovoltaïque</term>
<term>Température recuit</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage transmission</term>
<term>Analyse thermique</term>
<term>Réseau orthorhombique</term>
<term>Dépendance température</term>
<term>Réseau cubique</term>
<term>Séléniure de cuivre</term>
<term>Séléniure d'indium</term>
<term>Chalcopyrite</term>
<term>Phase bêta</term>
<term>Traitement thermique</term>
<term>Grosseur grain</term>
<term>Porosité</term>
<term>Interface</term>
<term>Cristallinité</term>
<term>Cellule solaire</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie électronique transmission</term>
<term>CuInSe2</term>
<term>GaIn</term>
<term>Cu2S</term>
<term>CuSe</term>
<term>8115P</term>
<term>8460J</term>
<term>6855J</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electrodeposited CuInSe
<sub>2</sub>
thin films are of potential importance, as light absorber material, in the next generation of photovoltaic cells as long as we can optimize their annealing process to obtain dense and highly crystalline films. The intent of this study was to gain a basic understanding of the key experimental parameters governing the structural-textural-composition evolution of thin films as function of the annealing temperature via X-ray diffraction, scanning/transmission electron microscopy and thermal analysis measurements. The crystallization of the electrodeposited CuInSe
<sub>2</sub>
films, with the presence of Se and orthorhombic Cu
<sub>2-x</sub>
Se (0-Cu
<sub>2-x</sub>
Se) phases, occurs over two distinct temperature ranges, between 220 °C and 250 °C and beyond 520 °C. Such domains of temperature are consistent with the melting of elemental Se and the binary CuSe phase, respectively. The CuSe phase forming during annealing results from the reaction between the two secondary species O-Cu
<sub>2-x</sub>
Se and Se (o-Cu
<sub>2-x</sub>
Se+Se→2 CuSe) but can be decomposed into the cubic β-Cu
<sub>2-x</sub>
Se phase by slowing down the heating rate. Formation of liquid CuSe beyond 520°C seems to govern both the grain size of the films and the porosity of the substrate-CuInSe
<sub>2</sub>
film interface. A simple model explaining the competitive interplay between the film crystallinity and the interface porosity is proposed, aiming at an improved protocol based on temperature range, which will enable to enhance the film crystalline nature while limiting the interface porosity.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>517</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of secondary phases during annealing on re-crystallization of CuInSe
<sub>2</sub>
electrodeposited films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GOBEAUT (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LAFFONT (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TARASCON (J.-M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PARISSI (L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KERREC (O.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Réactivité et Chimie des Solides, 33 rue St Leu</s1>
<s2>80039 Amiens</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut de Recherche et de Développement de l'Energie Photovoltaïque, 6 quai Watier</s1>
<s2>78401 Chatou</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>4436-4442</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000188266780290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0305275</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electrodeposited CuInSe
<sub>2</sub>
thin films are of potential importance, as light absorber material, in the next generation of photovoltaic cells as long as we can optimize their annealing process to obtain dense and highly crystalline films. The intent of this study was to gain a basic understanding of the key experimental parameters governing the structural-textural-composition evolution of thin films as function of the annealing temperature via X-ray diffraction, scanning/transmission electron microscopy and thermal analysis measurements. The crystallization of the electrodeposited CuInSe
<sub>2</sub>
films, with the presence of Se and orthorhombic Cu
<sub>2-x</sub>
Se (0-Cu
<sub>2-x</sub>
Se) phases, occurs over two distinct temperature ranges, between 220 °C and 250 °C and beyond 520 °C. Such domains of temperature are consistent with the melting of elemental Se and the binary CuSe phase, respectively. The CuSe phase forming during annealing results from the reaction between the two secondary species O-Cu
<sub>2-x</sub>
Se and Se (o-Cu
<sub>2-x</sub>
Se+Se→2 CuSe) but can be decomposed into the cubic β-Cu
<sub>2-x</sub>
Se phase by slowing down the heating rate. Formation of liquid CuSe beyond 520°C seems to govern both the grain size of the films and the porosity of the substrate-CuInSe
<sub>2</sub>
film interface. A simple model explaining the competitive interplay between the film crystallinity and the interface porosity is proposed, aiming at an improved protocol based on temperature range, which will enable to enhance the film crystalline nature while limiting the interface porosity.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15P</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cristallisation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Crystallization</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Revêtement électrodéposé</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electrodeposited coatings</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépôt électrolytique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electrodeposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Cellule photovoltaïque</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photovoltaic cells</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>XRD</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microscopie électronique balayage transmission</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Scanning transmission electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Analyse thermique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thermal analysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Réseau orthorhombique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Orthorhombic lattices</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Chalcopyrite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Chalcopyrite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Phase bêta</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Beta phase</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Fase beta</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Grosseur grain</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Grain size</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Porosité</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Porosity</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Interface</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>GaIn</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Cu2S</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>CuSe</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8115P</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>222</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 005155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:09-0305275
   |texte=   Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024